SALUD URBANA EN AMÉRICA LATINA

Travel time and dietary intake in Latin American cities -A multilevel analysis.

Authors: Guimarães J, Olmedo NL, Moore K, Acharya B, Stern D, Menezes MC, Friche AAL, Wang X, Delclòs-Alió X, Rodriguez DA, Sarmiento OL, <u>Cardoso LO</u>.

Institutions: Oswaldo Cruz Foundation, Federal University of Minas Gerais, Federal University of Ouro Preto - Brazil; Drexel University, University of California, Berkeley – USA; National University of Singapore - Singapore; Universitat Rovira i Virgili - Spain; Universidad de Los Andes, Colombia

Rationale

- Latin american cities have a diverse urban profile, which can define the spatial relationships between home and workplaces.
- Longer travel times have been observed due to increased urbanization and vehicle motorization rates, and may affect activities in daily life such as physical activity and dietary intake.

Rationale

- More time spent travelling can translate into less time for buying food and cooking, leading to a greater consumption of lower time cost meals (e.g. pre-prepared foods) and ultra-processed foods.
- There are some studies showing a positive association between active commuting and lower risk of obesity, diabetes, and metabolic syndrome.
- There is limited empirical evidence on how travel time affects diet, and even less is known about it in Latin American cities.

Research questions:

1) Whether travel time at the city-level is associated with individual diet indicators and

2) If this association varies according to the city size?

Methods

Sample

SALURBAL harmonized data - Countries with available data on travel time, diet indicators and covariates (BR, CO, CL, MX, PE)

Exposure (L1_UX – Urban extent metropolitan area, Quistberg, 2018)

<u>Urban average travel time</u> – measures the average automobile travel time during peak hour (in minutes);

<u>Urban travel delay</u> - the average travel time delay due to congestion in the street network (in minutes);

<u>Urban travel delay index</u> - Measures the increase in travel times due to congestion in the street network (Index ranges from zero to infinity)

Outcome (individual) <u>Vegetable</u> and <u>Sugar-sweetened beverages</u> consumption (Days per week - Rare: <= 1; Medium: 2-4 and Frequent: 5-7)

Methods

Confoundings

Individual: age, sex, education, car ownership;

City-level:

city size, population density, intersection density;

adjusted gas price, presence of mass transportation options (Subway or BRT);

social environment index.

Methods

- Analytical methods:
 - Ordinal multilevel models for each outcome Individuals nested within cities Random effect at the city level
 - Model building:

```
Model 1: exposure + sex + age
```

```
Model 2: exposure + sex + age + education
Model 3: exposure + sex + age + education, car ownership
Model 4: M3 + citysize + popden + intden + gasprice + transport option
Model 5: M4 + socio environment index
```

Models - 3 tertiles based on the city size (M1-M3 were the same and M4 and M5 without city size)

Results - Descriptives

Country	BR	CL	CO	MX	PE
Survey year	2013	2010	2010	2012	2016
Number of cities (n=181)	27	21	35	91	23
Number of individuals*	93,113	3,140	62,230	72,789	11,929

 Table 1. Number of cities and individuals per country.

*Note: Surveys complete samples;

Analytic sample: 57,170 (Vegetable consumption) 42,117 (SSB consumption)

Results - Descriptives

Table 2. City-level characteristics by <u>Vegetable consumption groups</u>.

City level characteristics	Vegetable consumption (in Days per week)				
	Frequent (5-7)	Medium (2-4)	Rare (<=1)	p-value	
Average travel time in traffic (min)	30.0	28.9	26.1	< 0.001	
Average travel delay time in traffic (min)	5.6	6.2	6.2	< 0.001	
Travel delay index	0.23	0.27	0.28	< 0.001	
City size	46523.3	41039.3	30914.2	< 0.001	
Population density	7775.4	8632.8	9839.4	< 0.001	
Intersection density (NA=42)	13.0	12.9	12.4	< 0.001	
Adjusted gas price (NA=533)	0.03	0.03	0.03	< 0.001	
Presence of mass transit, %					
No	44.7	37.0	18.3	< 0.001	
Yes	50.7	35.8	13.5		
Social environment index (z-score)*	0.19	0.06	-0.02	< 0.001	

Results - Descriptives

Table 3. City-level characteristics by Sugar Sweetened Bevarages consumption groups.

City level characteristics	Sugar Sweetened beverages consumption (in Days per week)				
	Frequent (5-7)	Medium (2-4)	Rare (<=1)	p-value	
Average travel time in traffic (min)	30.7	29.6	29.9	< 0.001	
Average travel delay time in traffic (min)	5.2	5.1	5.3	< 0.001	>
Travel delay index	0.22	0.22	0.23	< 0.001	
City size	51942.9	47454.9	48567.4	< 0.001	
Population density	8292.7	8073.3	8184.4	< 0.001	
Intersection density (NA=42)	15.6	14.3	14.8	< 0.001	
Adjusted gas price (NA=533)	0.036	0.037	0.038	< 0.001	
Presence of mass transit, %					
No	44.2	30.8	25.0	< 0.001	
Yes	49.2	26.2	24.5		
Social environment index (z-score)*	0.06	-0.0005	0.02	< 0.001	

* Higher score indicates better social environment

Figure 1: Adjusted association between Avarage travel time, Delay Time and Delay Index and Vegetable consumption in Latinamerican cities. SALURBAL Project.

Notes:

Odds for Rarity of consumption; Average travel time / delay time variable: 10 min increase. Delay index: 0.1 increase

Results - models

All L1ADs All L1ADs, No city size Tertile 1 L1ADs Tertile 2 L 1AL 2.0 Tim 1.5 0 1.0 0.5 1.50 1.25 of 1.00 Ó 0.75 0.50 15 Time 10 Delay 5 0. M₂ 133 M5 28 -

SALURBAL

Figure 2: Adjusted association between Avarage travel time, Delay Time and Delay Index and SSB consumption in Latinamerican cities. SALURBAL Project.

Notes:

Odds for Rarity of consumption Average travel time / delay time variable: 10 min increase. Delay index: 0.1 increase

Summary Results

 Our results suggest there is an inverse association between travel time (avarage travel time, avarage delay time and travel delay index) and the frequency of vegetable consumption and a direct association with the frequency of SSB consumption - specially in bigger cities.

 Relevance of interventions in urban mobility systems for healthy diets.

Strengths

Harmonized data for five countries;

Big sample size;

Possibility to explore a novel hypothesis.

Limitations

Lack of temporality between exposure and outcome measures (travel time data does not precede diet data)

Heterogeneity of exposure across individuals in the same city

SALURBAL

Acknowledgements

Wellcome Trust; Drexel University; Oswaldo Cruz Foundation; Co-authors and Salurbal Project team.

LEARN MORE AND CONTACT US

LACURBANHEALTH.ORG SALURBAL@DREXEL.EDU

> FOLLOW US @LACURBANHEALTH

🈏 f 🖸 in